Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system.
نویسندگان
چکیده
In this study, we focused on the pharmacological characterization of cannabinoid receptor coupling to G protein-gated inwardly rectifying potassium (GIRK) channels. Cannabinoids were tested on Xenopus laevis oocytes coexpressing the CB(1) receptor and GIRK1 and GIRK4 channels (CB(1)/GIRK1/4) or the CB(2) receptor and GIRK1/4 channels (CB(2)/GIRK1/4). WIN 55,212-2 enhanced currents carried by GIRK channels in the CB(1)/GIRK1/4 and CB(2)/GIRK1/4 system; however, the CB(2) receptor did not couple efficiently to GIRK1/4 channels. In the CB(1)/GIRK1/4 system, WIN 55,212-2 was the most efficacious compound tested. CP 55,940 and anandamide acted as partial agonists. The rank order of potency was CP 55,940 > WIN 55,212-2 = anandamide. The CB(1)-selective antagonist SR141716A alone acted as a inverse agonist by inhibiting GIRK currents in oocytes expressing CB(1)/GIRK1/4, suggesting the CB(1) receptor is constitutively activated. A conserved aspartate residue, which was previously shown to be critical for G protein coupling in cannabinoid receptors, was mutated (to asparagine, D163N) and analyzed. Oocytes coexpressing CB(1)/GIRK1/4 or D163N/GIRK1/4 were compared. The potency of WIN 55, 212-2 at the mutant receptor was similar to wild type, but its efficacy was substantially reduced. CP 55,940 did not elicit currents in oocytes expressing D163N/GIRK1/4. In summary, it appears the CB(1) and CB(2) receptors couple differently to GIRK1/4 channels. In the CB(1)/GIRK1/4 system, cannabinoids evaluated demonstrated the ability to enhance or inhibit GIRK currents. Furthermore, a conserved aspartate residue in the CB(1) receptor is required for normal communication with GIRK channels in oocytes demonstrating the interaction between receptor and channels is G protein dependent.
منابع مشابه
Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Phencyclidine
Addictive drugs, such as opioids, ethanol, cocaine, amphetamine, and phencyclidine (PCP), affect many functions of the nervous system and peripheral organs, resulting in severe health problems. G protein-activated inwardly rectifying K(+) (GIRK, Kir3) channels play an important role in regulating neuronal excitability through activation of various Gi/o protein-coupled receptors including opioid...
متن کاملIdentification of Selective Agonists and Antagonists to G Protein-Activated Inwardly Rectifying Potassium Channels: Candidate Medicines for Drug Dependence and Pain
G protein-activated inwardly rectifying K(+) (GIRK) channels have been known to play a key role in the rewarding and analgesic effects of opioids. To identify potent agonists and antagonists to GIRK channels, we examined various compounds for their ability to activate or inhibit GIRK channels. A total of 503 possible compounds with low molecular weight were selected from a list of fluoxetine de...
متن کاملA recombinant inwardly rectifying potassium channel coupled to GTP- binding proteins
GTP-binding (G) proteins have been shown to mediate activation of inwardly rectifying potassium (K+) channels in cardiac, neuronal and neuroendocrine cells. Here, we report functional expression of a recombinant inwardly rectifying channel which we call KGP (or hpKir3.4), to signify that it is K+ selective, G-protein-gated and isolated from human pancreas. KGP expression in Xenopus oocytes resu...
متن کاملDistinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization.
Desensitization of cannabinoid receptor signaling by a G-protein coupled receptor kinase (GRK) was examined using the Xenopus oocyte expression system. Application of a CB1 agonist, WIN 55,212-2, evoked a concentration-dependent increase in K+ conductance (Kir3) in oocytes coexpressing rat CB1 with the G-protein-gated, inwardly rectifying K+ channels Kir3.1 and Kir3.4. Desensitization was sligh...
متن کاملActivation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein bg subunits
G protein-coupled inwardly rectifying potassium (GIRK) channels can be activated or inhibited by different classes of receptors, suggesting a role for G proteins in determining signaling specificity. Because G protein bg subunits containing either b1 or b2 with multiple Gg subunits activate GIRK channels, we hypothesized that specificity might be imparted by b3, b4, or b5 subunits. We used a tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 291 2 شماره
صفحات -
تاریخ انتشار 1999